如图,在四棱锥中,底面是正方形,侧面底面,若、分别为、的中点.(Ⅰ) 求证://平面;(Ⅱ) 求证:平面平面;
(本小题满分12分) 已知直线两直线中,内角A,B,C对边分别为时,两直线恰好相互垂直; (I)求A值; (II)求b和的面积
(本小题满分14分) 已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛物线的焦点F. (I)求抛物线和椭圆的标准方程; (II)过点F的直线交抛物线于A、B两不同点,交轴于点N,已知,求证:为定值. (III)直线交椭圆于P,Q两不同点,P,Q在x轴的射影分别为,,,若点S满足:,证明:点S在椭圆上.
(本小题满分13分) 已知处的切线为 (I)求的值; (II)若的极值; (III)设,是否存在实数(,为自然常数)时,函数的最小值为3.
(本小题满分12分) 已知是等差数列的前n项和,数列是等比数列,恰为的等比中项,圆,直线,对任意,直线都与圆C相切. (I)求数列的通项公式; (II)若时,的前n项和为,求证:对任意,都有
(本小题满分12分) 如图,ABCD为梯形,平面ABCD,AB//CD,,E为BC中点,连结AE,交BD于O. (I)平面平面PAE (II)求二面角的大小(若非特殊角,求出其余弦即可)