已知函数f(x)=,其中n.(1)求函数f(x)的极大值和极小值;(2)设函数f(x)取得极大值时x=,令=23,=,若p≤<q对一切n∈N+恒成立,求实数p和q的取值范围.
某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A型卡车和8辆B型卡车.又已知A型卡车每天每辆的运载量为30吨,成本费为0.9千元;B型卡车每天每辆的运载量为40吨,成本费为1千元. (1)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各多少辆? (2)在(1)的所求区域内,求目标函数的最大值和最小值.
在中,内角所对边长分别为,,。 (1)求的最大值;(2)求函数的值域.
设函数. (1)在区间上画出函数的图象 ; (2)设集合. 试判断集合和之间的关系,并给出证明.
已知函数的最大值为0,其中。 (1)求的值; (2)若对任意,有成立,求实数的最大值; (3)证明:
如图所示,已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点,是的中点,直线与相交于点. (1)求圆的方程; (2)当时,求直线的方程; (3)是否为定值?如果是,求出其定值;如果不是,请说明理由.