已知函数f(x)=,其中n.(1)求函数f(x)的极大值和极小值;(2)设函数f(x)取得极大值时x=,令=23,=,若p≤<q对一切n∈N+恒成立,求实数p和q的取值范围.
设的内角所对的边长分别为,且. (1)求角的大小; (2)若角,边上的中线的长为,求的面积.
已知向量,且。 (1)求tanA的值; (2)求函数R)的值域。
已知集合,函数的定义域为B。 (1)若a=2求集合B; (2)若A=B,求实数a的值。
如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点. (1)求证:B1D^平面PQR; (2)设二面角B1-PR-Q的大小为q,求|cosq|.
一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X.若P(X=2)=. (1)求口袋中的白球个数; (2)求X的概率分布与数学期望.