已知向量,,,.(1)当时,求向量与的夹角;(2)当时,求的最大值;(3)设函数,将函数的图像向右平移s个长度单位,向上平移t个长度单位后得到函数的图像,且,令,求的最小值.
如图,四棱锥的侧面垂直于底面,,,,在棱上,是的中点,二面角为(1)求的值;(2)求直线与平面所成角的正弦值.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试,①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率;②学校决定在这6名学生中随机抽取2名学生接受考官的面试,第4组中有名学生被考官面试,求的分布列和数学期望.
已知的内角、、的对边分别为、、,,且(1)求角;(2)若向量与共线,求、的值.
已知函数(),.(Ⅰ)当时,解关于的不等式:;(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;(Ⅲ)若是使恒成立的最小值,对任意,试比较与的大小(常数).
设是定义在上的奇函数,函数与的图象关于轴对称,且当时,.(I)求函数的解析式;(II)若对于区间上任意的,都有成立,求实数的取值范围.