(本小题满分12分)已知函数,其中,相邻两对称轴间的距离不小于(Ⅰ)求的取值范围; (Ⅱ)在 的面积.
(本小题12分) 已知函数,.(1)求函数的周期和最大值;(2)设函数在的区间上的图像与轴的交点从左到右分别为,图像的最高点为,求与的夹角的余弦值.
(本小题12分)2014年2月,西非开始爆发埃博拉病毒疫情,埃博拉病毒是引起人类和灵长类动物发生埃博拉出血热的烈性病毒,引发了世界恐慌。中国国际救援组织立即采用分层抽样的方法从病毒专家、心理专家、地质专家三类专家中抽取若干人组成研究团队赴西非工作,有关数据见表1(单位:人).病毒专家为了检测当地群众发烧与是否更易受博拉病毒疫情影响,在当地随机选取了群众进行了检测,并将有关数据整理为不完整的列联表(表2).表1:
表2:
(1)求;(2)写出表中的值,并判断是否有99.9%的把握认为疫情地区的群众发烧与患Ebola病毒有关;(3)若从研究团队的病毒专家和心理专家中随机选人撰写研究报告,求其中恰好有人为病毒专家的概率.临界值表:
(本小题12分)在等差数列中,..(1)求;(2)设,求数列的前项和的取值范围.
(本小题满分14分)已知函数 (Ⅰ)求函数的定义域;(Ⅱ)确定函数在定义域上的单调性,并证明你的结论;(Ⅲ)若时恒成立,求正整数的最大值.
(本小题满分14分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)探究是否是个定值,若是,求出这个定值;若不是,请说明理由.