(本小题满分14分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)探究是否是个定值,若是,求出这个定值;若不是,请说明理由.
已知函数.(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若存在,使得成立,求的取值范围.
如图,在五面体中,四边形是边长为4的正方形,,平面平面,且,,点G是EF的中点.(Ⅰ)证明:平面;(Ⅱ)若直线BF与平面所成角的正弦值为,求的长;(Ⅲ)判断线段上是否存在一点,使//平面?若存在,求出的值;若不存在,说明理由.
某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同). (Ⅰ)求的值; (Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率; (Ⅲ)设为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量的分布列及其数学期望.
设函数,.(Ⅰ)当时,求函数的值域;(Ⅱ)已知函数的图象与直线有交点,求相邻两个交点间的最短距离.
已知函数.(1)求的单调区间和极值;(2)若对于任意的,都存在,使得,求的取值范围.