(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).(1)求证:平面FHG//平面ABE;(2)记表示三棱锥B-ACE 的体积,求的最大值;(3)当取得最大值时,求二面角D-AB-C的余弦值.
(本题满分14分)已知函数,且数列是首项为,公差为2的等差数列. (1)求证:数列是等比数列; (2)设,求数列的前项和的最小值..
(本题满分14分)如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于. (1)求证:; (2)若四边形ABCD是正方形,求证; (3)在(2)的条件下,求四棱锥的体积.
(本题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人? (2)在上述抽取的6人中选2人,求恰有一名女生的概率. (3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关? 下面的临界值表供参考:
(本题满分12分)已知函数. (1)求的周期和单调递增区间; (2)说明的图象可由的图象经过怎样变化得到.
(本小题满分13分)已知A(0,2,3),B(-2,1,6),C(1,-1,5) (1)求、、; (2)求以、为边的平行四边形的面积;