已知函数 f x = x + a x + b x ≠ 0 ,其中 a , b ∈ R . (Ⅰ)若曲线 y = f x 在点 P 2 , f 2 处的切线方程为 y = 3 x + 1 ,求函数 f x 的解析式; (Ⅱ)讨论函数 f x 的单调性; (Ⅲ)若对于任意的 a ∈ 1 2 , 2 ,不等式 f x ≤ 10 在 1 4 , 1 上恒成立,求 b 的取值范围.
如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且=,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.(1)求椭圆的离心率;(2)若△ABF1的周长为,求椭圆的方程.
如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若=2,·=,求椭圆的方程.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).(1)求证:当λ=1时,⊥;(2)若当λ=1时,有·=,求椭圆C的方程..
椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.