(本小题满分14分)如图,在四棱锥中,底面是正方形,平面.点是线段的中点,点是线段上的动点.(1)若是的中点,求证:平面;(2)求证:;(3)若,,当三棱锥的体积等于时,试判断点在边上的位置,并说明理由.
在数列中,. (1)求数列的通项; (2)若对任意的正整数恒成立,求实数的取值范围.
(本题满分l4分)已知向量,且,其中是的三内角,分别是角的对边. (1)求角的大小;(2)求的取值范围.
设A(),B()是椭圆的两点,,,且,椭圆的离心率,短轴长为2,O为坐标原点。 (1)求椭圆方程; (2)若存在斜率为的直线AB过椭圆的焦点F()(为半焦距),求的值; (3)试问AOB的面积是否为定值?若是,求出该定值;若不是,说明理由。
已知是函数的一个极值点。 (1)求;(2)求函数的单调区间; (3)若直线与函数的图象有3个交点,求的取值范围。
(12)设焦点在轴上的双曲线渐近线方程为,且离心率为2,已知点A() (1)求双曲线的标准方程; (2)过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程。