(本小题满分14分)已知抛物线()过点.(1)求抛物线的方程及其准线方程;(2)过抛物线焦点的直线与抛物线相交于两点、,点在抛物线的准线上,且满足直线平行轴,试判断坐标原点与直线的关系,并证明你的结论.
(本小题满分14分)已知二次函数()的导函数的图象如图所示:(Ⅰ)求函数的解析式;(Ⅱ)令,求在上的最大值.
已知动圆过定点P(1,0)且与定直线相切,点C在上.(Ⅰ)求动圆圆心M的轨迹方程;(Ⅱ)设过点P且斜率为的直线与曲线交于A、B两点.问直线上是否存在点C ,使得是以为直角的直角三角形?如果存在,求出点C的坐标;若不能,请说明理由.
(本小题满分14分)在平面直角坐标系中,N为圆C:上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且.(Ⅰ)求动点P表示的曲线E的方程;(Ⅱ)若曲线E与x轴的交点为,当动点P与A,B不重合时,设直线与的斜率分别为,证明:为定值;
(本小题满分14分)设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围。
(本小题满分12分)已知椭圆C:,它的离心率为.直线与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.