如图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.
已知数列 a n 满足 a n + 2 = q a n ( q 为实数 , 且 q ≠ 1 ), n ∈ N * , a 1 = 1 , a 2 = 2 ,且 a 2 + a 3 , a 3 + a 4 , a 4 + a 5 成等差数列. (Ⅰ)求 q 的值和 a n 的通项公式; (Ⅱ)设 b n = log 2 a 2 n a 2 n - 1 , n ∈ N * ,求数列 b n 的前 n 项和.
如图,在四棱柱 A B C D - A 1 B 1 C 1 D 1 中,侧棱 A 1 A ⊥ 底面 A B C D , A B ⊥ A C , A B = 1 , A C = A A 1 = 2 , A D = C D = 5 ,且点M和N分别为 B 1 C 和 D 1 D 的中点.
(Ⅰ)求证: M N ∥ 平面 A B C D ; (Ⅱ)求二面角 D 1 - A C - B 1 的正弦值; (Ⅲ)设 E 为棱 A 1 B 1 上的点,若直线 N E 和平面 A B C D 所成角的正弦值为 1 3 ,求线段 A 1 E 的长
为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (Ⅰ)设 A 为事件"选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会"求事件 A 发生的概率; (Ⅱ)设 X 为选出的4人中种子选手的人数,求随机变量 X 的分布列和数学期望.
已知函数 f x = sin 2 x - sin 2 x - π 6 , x ∈ R
(Ⅰ)求 f x 最小正周期; (Ⅱ)求 f x 在区间 - π 3 , π 4 上的最大值和最小值.
已知函数 f ( x ) = - 2 ln x + x 2 - 2 a x + a 2 ,其中 a > 0 . (Ⅰ)设 g ( x ) 为 f ( x ) 的导函数,讨论 g ( x ) 的单调性; (Ⅱ)证明:存在 a ∈ ( 0 , 1 ) ,使得 f ( x ) ≥ 0 恒成立,且 f ( x ) = 0 在区间 ( 1 , + ∞ ) 内有唯一解.