如图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.
(本小题满分10分)选修4-5:不等式选讲 已知正实数满足:. (1)求的最小值; (2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数). (1)求曲线的直角坐标方程与直线的普通方程; (2)设点,若直线与曲线交于,两点,且,求实数的值.[来
(本小题满分10分)选修4-1:几何证明选讲 如图,AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H. (1)求证:C,D,E,F四点共圆; (2)若GH=6,GE=4,求EF的长.
(本小题满分12分) 己知函数 (1)若关于的不等式恒成立,求整数的最小值; (2)若,正实数满足,证明:
(本小题满分12分) 已知椭圆C:=1()的离心率与双曲线=1的一条渐近线的斜率相等,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切(为常数). (1)求椭圆C的方程; (2)若过点的直线与椭圆相交两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数取值范围.