(本小题满分7分)选修4—2:矩阵与变换已知二阶矩阵有特征值λ1=4及属于特征值4的一个特征向量并有特征值及属于特征值-1的一个特征向量, (Ⅰ)求矩阵;(Ⅱ)求.
设函数其中实数. (1)当时,求函数的单调区间; (2)当函数与的图象只有一个公共点且存在最小值时, 记的最小值为,求函数的值域; (3)若函数与在区间内均为增函数,求实数的取值范围.
某地区有100户农民,都从事水产养殖。据了解,平均每户的年收入为3万元。为了调整产业结构,当地政府决定动员部分农民从事水产加工。据估计,如果能动员户农民从事水产加工,那么剩下的继续从事水产养殖的农民平均每户的年收入有望提高,而从事水产加工的农民平均每户的年收入将为万元. (1)在动员户农民从事水产加工后,要使从事水产养殖的农民的总年收入不低于动员前从事水产养殖的农民的总年收入,求的取值范围; (2)若,要使这100户农民中从事水产加工的农民的总年收入始终不高于从事水产养殖的农民的总年收入,求的最大值.
已知函数是定义在上的奇函数,当时, (1)判断函数在区间上的单调性,并用单调性的定义证明; (2)求函数在上的解析式; (3)求函数的值域.
若函数=的图象过点 (1)求函数的解析式; (2)求函数在区间上的最小值和最大值.
已知复数,且为纯虚数. (1)求复数; (2)若,求复数的模.