(本小题满分13分)有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时,车距为2.66个车身长。(1)写出车距关于车速的函数关系式;(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
在数列中,已知a1=2,an+1=4an-3n+1,n∈. (1)设,求数列的通项公式; (2)设数列的前n项和为Sn,证明:对任意的n∈,不等式Sn+1≤4Sn恒成立.
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖. (1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率; (2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
如图,四棱锥的底面是矩形,底面,P为BC边的中点,SB与 平面ABCD所成的角为45°,且AD=2,SA=1. (1)求证:平面SAP; (2)求二面角A-SD-P的大小.
在△ABC中,已知角A、B、C所对的边分别是a、b、c,且a=2,,设. (1)用表示b; (2)若求的值.
各项均不为零的数列,首项,且对于任意均有 (1)求数列的通项公式; (2)数列的前项和为,求证:。