(本小题满分13分)有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时,车距为2.66个车身长。(1)写出车距关于车速的函数关系式;(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD. (1)若G为AD边的中点,求证:BG⊥平面PAD; (2)求证:AD⊥PB; (3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
已知,,若,求: (1)的最小正周期及对称轴方程. (2)的单调递增区间. (3)当时,函数的值域.
(本小题满分14分)若数列的各项均为正数,,为常数,且. (1)求的值; (2)证明:数列为等差数列; (3)若,对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差数列?若存在,用k分别表示一组p和r;若不存在,请说明理由.
(本小题满分13分)设F1,F2分别是椭圆的左右焦点. (1)若P是该椭圆上的一个动点,求的最大值和最小值. (2)是否存在经过点A(5,0)的直线l与椭圆交于不同的两点C,D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
(本小题满12分)已知函数. (1)若=0,判断函数的单调性; (2)若时,<0恒成立,求的取值范围.