(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
(本小题满分12分)设函数.(Ⅰ)求的最小值;(Ⅱ)若对恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点(不同于原点),点关于轴的对称点为,直线交轴于点.(Ⅰ)求椭圆的方程;(Ⅱ)求 的值.
本小题满分12分)已知函数f(x)=ax3+mx2-m2x+1(m<0)在点x=-m处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间.
本小题满分10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.
已知数列满足,且对任意的都有