设关于的一元二次方程.(1)若是从1,2,3这三个数中任取的一个数,是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率; (2)若是从区间[0,3]中任取的一个数,是从区间[0,2]中任取的一个数,求上述方程有实根的概率.
如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是多少?
如图,设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,点 D 在椭圆上, D F 1 ⊥ F 1 F 2 , F 1 F 2 D F 1 = 2 2 , △ D F 1 F 2 的面积为 2 2 . (1)求该椭圆的标准方程; (2)是否存在圆心在 y 轴上的圆,使圆在 x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
如图,四棱锥 P-ABCD 中,底面是以 O 为中心的菱形, PO⊥ 底面 ABCD , AB=2,∠BAD= π 3 , M 为 BC 上一点,且 BM= 1 2 . (1)证明: BC⊥ 平面 POM ; (2)若 MP⊥AP ,求四棱锥 P-ABMO 的体积.
已知函数 f x = x 4 + a x -lnx- 3 2 ,其中 a∈R ,且曲线 y=f x 在点 1 , f 1 处的切线垂直于 y= 1 2 x . (1)求 a 的值; (2)求函数 f x 的单调区间与极值.
在 △ A B C 中,内角 A , B , C 所对的边分别为 a , b , c ,且 a + b + c = 8 .
(1)若 a = 2 , b = 5 2 ,求 c o o s C 的值; (2)若 sin A cos 2 B 2 + sin B cos 2 A 2 = 2 sin C ,且 △ A B C 的面积 S = 9 2 sin C ,求 a 和 b 的值.