(本小题满分16分)设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足(). (1)求数列的通项公式; (2)试确定的值,使得数列为等差数列; (3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的正整数.
已知函数(1)求函数的周期、对称轴方程;(2)求函数单调增区间。
已知(其中),函数,若直线是函数f(x)图象的一条对称轴,(1)试求的值;(2)先列表再作出函数在区间上的图象.
如图,在正方体中 ①求证:平面;②求证:与平面的交点是的重心(三角形三条中线的交点)
已知奇函数的定义域为实数集,且在上是增函数,当 时,是否存在实数,使对所有的恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知二次函数,不等式的解集为. (1)求函数的解析式;(2)解不等式:;(3)若在上是增函数,求实数的取值范围.