如图,抛物线(m>0)经过点A(0,m),与x轴交于点B、点C,抛物线的对称轴交抛物线和x轴于点D、点E.(1)求点B、点C的坐标;(2)当∠BAC=90°时,求证:△ADE是等腰直角三角形;(3)在(2)的条件下,除点D外,第一象限内的抛物线上是否存在点P,使△AEP为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
如图,二次函数的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E. (1)请直接写出点D的坐标: ; (2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值; (3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
(1)若甲用户3月份的用气量为60m3,则应缴费 元; (2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式; (3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上) (1)若△CEF与△ABC相似. ①当AC=BC=2时,AD的长为 ; ②当AC=3,BC=4时,AD的长为 ; (2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73)
如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F. (1)求证:DE=BF; (2)连接EF,写出图中所有的全等三角形.(不要求证明)