如图,抛物线(m>0)经过点A(0,m),与x轴交于点B、点C,抛物线的对称轴交抛物线和x轴于点D、点E.(1)求点B、点C的坐标;(2)当∠BAC=90°时,求证:△ADE是等腰直角三角形;(3)在(2)的条件下,除点D外,第一象限内的抛物线上是否存在点P,使△AEP为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
(本题12分)某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费. ⑴胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示) ⑵下面是该教师10月、11月的用电情况和交费情况:
根据上表数据,求A值,并计算该教师12月份应交电费多少元?
(本题10分)将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙. ⑴试判断图乙中△ODE和△OCF是否全等,并证明你的结论. ⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
(本题8分)如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12, ∠APB=60°. 求:(1)PA的长;(2)∠COD的度数.
(本题8分)如图,两个同心圆,大圆的弦AB和AC分别切小圆于点D,E. 求证:DE∥BC
(本题8分)关于的一元二次方程,其根的判别式的值为1,求的值及方程的根.