(本小题满分14分)已知点在直线:上,是直线与轴的交点,数列是公差为1的等差数列.(1)求数列,的通项公式;(2)若是否存在,使成立?若存在,求出所有符合条件的值;若不存在,请说明理由.
(本小题满分15分) 已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且.(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)
(本小题满分14分)已知函数在与时都取得极值(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围。
(本小题满分14分)已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
已知点在以坐标轴为对称轴的椭圆上,点到两个焦点的距离分别为和,过作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆的方程。
已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,求椭圆的标准方程。