(本小题满分14分)已知圆心在轴上的圆过点和,圆的方程为.(1)求圆的方程;(2)由圆上的动点向圆作两条切线分别交轴于,两点,求的取值范围.
在直角坐标系xoy中,若角的始边为x轴的非负半轴,终边为射线l:y=x (x≥0).(1)求的值;(2)若点P,Q分别是角始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.
已知向量(I)若的值;(II)若向量的最大值。
已知:在△ABC中,cosA = .(1)求cos2 – sin(B+C)的值;(2)如果△ABC的面积为4,AB =" 2" ,求BC的长.
在中,三边、、对角分别为、、,且(1)求角的余弦值;(2)若,且,求和的值.
已知函数,.(1)求函数在内的单调递增区间;(2)若函数在处取到最大值,求的值;(3)若(),求证:方程在内没有实数解.(参考数据:,)