本题共有3个小题,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分7分.各项均为正数的数列的前项和为,且对任意正整数,都有.(1)求数列的通项公式;(2)如果等比数列共有项,其首项与公比均为,在数列的每相邻两项与之间插入个后,得到一个新的数列.求数列中所有项的和;(3)如果存在,使不等式成立,求实数的范围.
若等边的边长为,平面内一点满足,求.
已知函数f(x)=-ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数在区间(0,+)上为增函数,求整数m的最大值.
已知函数和的定义域都是[2,4].若,求的最小值;若在其定义域上有解,求的取值范围;若,求证.
为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
已知曲线C的极坐标方程为.(1)若直线过原点,且被曲线C截得弦长最短,求此时直线的标准形式的参数方程;(2)是曲线C上的动点,求的最大值.