(本小题满分14分)在四棱锥中,平面,是边长为4的正三角形,与的交点恰好是中点,又,点在线段上,且.(1)求证:;(2)求证:平面.
已知数列的前项和为,且().(Ⅰ)证明:数列是等比数列;(Ⅱ)若数列满足,且,求数列的通项公式.
在中,内角A,B,C的对边分别是(I)求角C的大小;(II)若求a,b.
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵,向量. (I)求矩阵的特征值、和特征向量;(II)求的值.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)求直线l的直角坐标方程;(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.(3)(本小题满分7分)选修4-5:不等式选讲(Ⅰ)已知:a、b、; (Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
(本小题满分13分)已知数列满足,数列满足,数列满足.(Ⅰ)求数列的通项公式;(Ⅱ),,试比较与的大小,并证明;(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.
(本小题满分13分)某设计部门承接一产品包装盒的设计(如图所示),客户除了要求、边的长分别为和外,还特别要求包装盒必需满足:①平面平面;②平面与平面所成的二面角不小于;③包装盒的体积尽可能大。若设计部门设计出的样品满足:与均为直角且长,矩形的一边长为,请你判断该包装盒的设计是否能符合客户的要求?说明理由.