(本小题满分10分)设且,集合的所有个元素的子集记为.(1)求集合中所有元素之和;(2)记为中最小元素与最大元素之和,求的值.
在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点,如图所示. 求点B到平面CMN的距离.
在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.(1)求证:平面AED⊥平面A1FD1;(2)在AE上求一点M,使得A1M⊥平面ADE.
已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.
如图所示,四棱锥P—ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD.(1)求证:平面PAC⊥平面PCD;(2)在棱PD上是否存在一点E,使CE∥平面PAB?若存在,请确定E点的位置;若不存在,请说明理由.
已知在直三棱柱ABC—A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.求证:(1)BC1⊥AB1;(2)BC1∥平面CA1D.