(本题满分15分)已知椭圆:过点,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设分别为椭圆的左、右焦点,过的直线与椭圆交于不同两点,记的内切圆的面积为,求当取最大值时直线的方程,并求出最大值.
(本小题共13分)已知圆过两点(1,-1),(-1,1),且圆心在上.(1)求圆的方程;(2)设是直线上的动点,、是圆的两条切线,、为切点,求四边形面积的最小值.
(本小题共12分)如图,四边形是矩形,平面,是上一点,平面,点,分别是,的中点. (Ⅰ)求证:平面;(Ⅱ)求证:.
(本小题共12分)已知向量,,函数. (Ⅰ)求函数的最小正周期和最大值;(Ⅱ)求函数在区间上的最大值和最小值.
已知函数(1)若函数在上为增函数,求实数的取值范围(2)当时,求在上的最大值和最小值(3)求证:对任意大于1的正整数,恒成立
已知函数f(x)=,若数列,满足,, ,(1)求的关系,并求数列的通项公式;(2)记, 若恒成立.求的最小值.