某食品企业一个月内被消费者投诉的次数用X表示,据统计,随机变量X的概率分布如下:
(1)求a的值和X的数学期望。(2)假设二月份与一月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次水平摇动三个游戏盘,当小球静止后,就完成了一局游戏.(Ⅰ)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?(Ⅱ)用随机变量ξ表示一局游戏后,小球停在阴影部分的事件个数与小球没有停在阴影部分的事件个数之差的绝对值,求随机变量ξ的分布列及数学期望.
红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.(1)求红队至少一名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.
已知函数f(x)=在x=1处取得极值2.(1)求函数f(x)的表达式;(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
设函数f(x)=x3﹣x2﹣2x﹣.(1)求函数f(x)的单调递增、递减区间;(2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.
我们已经学过了等差数列,你是否想到过有没有等和数列呢?(1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{an}的奇数项与偶数项各有什么特点?并加以说明.