红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.(1)求红队至少一名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M为PC上一点,PA=PD=2,BC=AD=1,CD=. (Ⅰ)求证:平面PQB⊥平面PAD; (Ⅱ)若二面角M-BQ-C为30°,设PM=MC,试确定的值.
在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率; (Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
已知各项都不相等的等差数列的前6项和为60,且为和的等比中项. ( I )求数列的通项公式; (II) 若数列满足,且,求数列的前项和.
在中,分别是角的对边,向量,,且. (Ⅰ)求角的大小; (Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.
设,为共轭复数,且,求和。