在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下表:
(1)若记销售单价比每瓶进价多元时,日均毛利润(毛利润=售价进价固定成本)为元,求关于的函数解析式和自变量的取值范围; (2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?
已知:如图,是⊙外一点,的延长线交⊙于点和点,点在圆上,且,∠. (1)求证:直线是⊙的切线; (2)若⊙的直径为10,求的长.
已知:△中,边的长为(),上的高为().设△中边的长为(),上的高为(). (1)求关于的函数解析式和自变量的取值范围; (2)求当时的取值范围.
学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车. (1)用画树状图的方法或列表法列出所有可能的结果; (2)求程、李两位教师同坐2号车的概率.
(1)计算:; (2)化简:.