(本小题满分14分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)求二面角P-AC-E的余弦值;(Ⅲ)求直线PA与平面EAC所成角的正弦值.
已知圆内一定点,为圆上的两不同动点. (1)若两点关于过定点的直线对称,求直线的方程. (2)若圆的圆心与点关于直线对称,圆与圆交于两点,且,求圆的方程.
已知函数(其中为正常数,)的最小正周期为. (1)求的值; (2)在△中,若,且,求
解关于的不等式
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。 (1)求的周长 (2)求的长 (3)若直线的斜率为1,求b的值。
已知的周长为,且. (1)求边长的值; (2)若,求的值.