过轴上动点引抛物线的两条切线、,、为切点.(Ⅰ)若切线,的斜率分别为和,求证:为定值,并求出定值;(Ⅱ)求证:直线恒过定点,并求出定点坐标; (Ⅲ)当最小时,求的值.
(本小题满分12分)已知函数其中(1)、若的单调增区间是(0.1),求m的值(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.
(本小题满分12分)若a、b、c是△ABC三个内角A、B、C所对边,且(1)求(2)当时,求的值
(本小题满分12分)在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD(1)求证:AB⊥平面PBC(2)求三棱锥C-ADP的体积(3)在棱PB上是否存在点M使CM∥平面PAD?若存在,求的值。若不存在,请说明理由。
(本小题满分12分)已知数列的前n项和为,满足(1)求数列的通项公式(2)设,求数列的前n项和。
(本小题满分12分)已知最小正周期为(1).求函数的单调递增区间及对称中心坐标(2).求函数在区间上的取值范围。