(本小题满分12分)如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,,∠A1AB=120°,D、E分别是BC、A1C1的中点. (Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF; (Ⅱ)在(Ⅰ)的条件下,求二面角A-A1C-F的余弦值.
(本小题满分10分) 在△ABC中,内角A、B、C对边长分别是a,b,c,已知 (I)若△ABC的面积等于; (II)若的面积。
(本小题满分14分) 已知函数 (1)若,求的单调递减区间; (2)若,求的最小值; (3)若,且存在使得,求实数的取值范围。
(本小题满分14分) 如图,F1、F2分别是椭圆的左右焦点,M为椭圆上一点,MF2垂直于轴,椭圆下顶点和右顶点分别为A,B,且 (1)求椭圆的离心率; (2)过F2作OM垂直的直线交椭圆于点P,Q,若,求椭圆方程。
(本小题满分14分) 某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),通过市场分析,若每件售价为500元时,该厂当年生产该产品能全部销售完。 (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
(本小题满分14分) 已知函数,其中为常数,且是函数的一个零点。 (1)求函数的最小正周期; (2)当时,求函数的值域。