如图,平面,四边形是正方形, ,点、、分别为线段、和的中点.(1)求异面直线与所成角的余弦值;(2)在线段上是否存在一点,使得点到平面的距离恰为?若存在,求出线段的长;若不存在,请说明理由.
在中,(1)求的值;(2)求的面积.
已知函数.(1)当时,解不等式;(2)若不等式恒成立,求实数的取值范围.
已知圆的极坐标方程为,直线的参数方程为(为参数),点的极坐标为,设直线与圆交于点、.(1)写出圆的直角坐标方程;(2)求的值.
已知,为圆的直径,为垂直的一条弦,垂足为,弦交于.(1)求证:、、、四点共圆;(2)若,求线段的长.
已知、为椭圆的左右焦点,点为其上一点,且有.(1)求椭圆的标准方程;(2)过的直线与椭圆交于、两点,过与平行的直线与椭圆交于、两点,求四边形的面积的最大值.