设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.⑴已知函数.求证:为曲线的“上夹线”. ⑵观察下图: 根据上图,试推测曲线的“上夹线”的方程,并给出证明.
已知函数f(x)=ln x+2x,g(x)=a(x2+x).(1)若a=,求F(x)=f(x)-g(x)的单调区间;(2)若f(x)≤g(x)恒成立,求实数a的取值范围.
已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间.
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
已知).(1)若时,求函数在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围;(3)令是否存在实数,当是自然对数的底)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.
已知向量,,且.(1)求点的轨迹的方程;(2)设曲线与直线相交于不同的两点,又点,当时,求实数的取值范围.