已知椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的半焦距为 c ,原点 O 到经过两点 ( c , 0 ) , ( 0 , b ) 的直线的距离为 1 2 c . (Ⅰ)求椭圆 E 的离心率; (Ⅱ)如图, A B 是圆 M : ( x + 2 ) 2 + ( y - 1 ) 2 = 5 2 的一条直径,若椭圆 E 经过 A , B 两点,求椭圆 E 的方程.
已知圆C过A(4,1),且与直线x﹣y﹣1=0相切于点B(2,1),求圆C的标准方程.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°. (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.
已知三角形ABC的三个顶点A(1,1),B(4,0),C(3,2),求三角形BC边上的高线和中线所在的直线方程.
已知函数f(x)=loga(1﹣x)+loga(x+3)(0<a<1) (1)求函数f(x)的定义域; (2)求函数f(x)的零点; (3)若函数f(x)的最小值为﹣4,求a的值.
已知向量=(cos,sin),=(cos,﹣sin),=(,﹣1),其中x∈R. (Ⅰ)当⊥时,求x值的集合; (Ⅱ)求|﹣|的最大值及并给出对应的x值.