(本小题满分12分)已知向量,,函数.(Ⅰ)求在区间上的零点;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c, ,△ABC的面积,当x=A时,函数取得极大值,求的值.
设函数的定义域是,其中常数. (1)若,求的过原点的切线方程. (2)当时,求最大实数,使不等式对恒成立. (3)证明当时,对任何,有.
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点. (1)当时,求椭圆的方程. (2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程. (3)求所有正实数,使得的边长是连续正整数.
设,用表示当时的函数值中整数值的个数. (1)求的表达式. (2)设,求. (3)设,若,求的最小值.
如图,正方体中,已知为棱上的动点. (1)求证:; (2)当为棱的中点时,求直线与平面所成角的正弦值.
已知的定义域为[]. (1)求的最小值. (2)中,,,边的长为函数的最大值,求角大小及的面积.