甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是,乙能答对其中的道题.规定每次考试都从备选的道题中随机抽出道题进行测试,答对一题加分,答错一题(不答视为答错)减分,至少得分才能入选.(Ⅰ)求乙的得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.
已知四棱锥的底面是菱形.,,,与交于点,,分别为,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值
在△中,角,,的对边分别为,,分,且满足.(Ⅰ)求角的大小;(Ⅱ)若,求△面积的最大值
(本小题15分)如图在三棱锥P-ABC中,PA 分别在棱,(1)求证:BC(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
(本小题15分)已知函数有极值.(1)求的取值范围;(2)若在处取得极值,且当时,恒成立,求的取值范围.
(本小题14分)如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD(1)证明:AB; (2)求面VAD与面VDB所成的二面角的余弦值。