已知在数列中,,,.(Ⅰ)证明数列是等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,证明:.
(本小题13分)已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点. (1)求抛物线的方程; (2)当直线,的倾斜角之和为时,证明直线过定点.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,,且满足. (1)求证:; (2)求点的距离; (3)求二面角的平面角的余弦值.
(本小题12分)已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线” (1)若“且”是真命题,求的取值范围; (2)若是的必要不充分条件,求的取值范围。
(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (1)当x=2时,求证:BD⊥EG ; (2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
已知命题:“,使等式成立”是真命题. (1)求实数的取值集合; (2)设不等式的解集为,若是的必要条件,求的取值范围.