数列首项,前项和与之间满足(1)求证:数列是等差数列 (2)求数列的通项公式(3)设存在正数,使对于一切都成立,求的最大值。
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,. (Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
已知数列满足:,,(),,,分别是公差不为零的等差数列的前三项.(Ⅰ)求的值;(Ⅱ)求证:对任意的,,,不可能成等比数列.
在△中,角所对的边分别为.已知.(Ⅰ)求角的大小; (Ⅱ)若,且△的面积为,求边的长.
设等差数列的前项和为,公差为正整数.若,则的值为 .
已知函数(1)当时,求使成立的的值;(2)当,求函数在上的最大值;(3)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.