已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。(Ⅰ)求椭圆的标准方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
如图,在中,边上的中线长为3,且,. (Ⅰ)求的值;(Ⅱ)求边的长.
已知,. (1)若,求的值; (2)若,求的值.
如图,正三棱柱中,点是的中点. (Ⅰ)求证: 平面; (Ⅱ)求证:平面.
已知函数, . (1)若, 函数在其定义域是增函数,求的取值范围; (2)在(1)的结论下,设函数的最小值; (3)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
已知数列的前项和满足:(为常数,且). (1)求的通项公式; (2)设,若数列为等比数列,求的值; (3)在满足条件(2)的情形下,设,数列的前项和为,求证:.