学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同。每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)(1)求在一次游戏中①摸出3个白球的概率;②获奖的概率。(2)求在两次游戏中获奖次数X的分布列及数学期望E(x)。
(本小题满分12分) 已知圆,圆心为,定点,为圆上一点,线段的垂直平分线与直线交于点. (Ⅰ)求点的轨迹的方程; (Ⅱ)过点的直线与曲线交于不同的两点和,且满足(为坐标原点),求弦长的取值范围.
(本小题满分12分) 已知动点在双曲线上,定点,求的最小值以及取最小值时点的横坐标.
(本小题满分12分) 已知椭圆,其左右焦点分别为.对于命题“点,”.写出,判断的真假,并说明理由.
(本小题满分12分) (Ⅰ)已知某椭圆的左右焦点分别为,且经过点,求该椭圆的标准方程以及离心率; (Ⅱ)某圆锥曲线以坐标轴为对称轴,中心为坐标原点,且过点,求该曲线的标准方程、焦点以及离心率;
(本小题满分10分) 已知命题“方程表示的曲线是椭圆”,命题“方程表示的曲线是双曲线”.且为真命题,为假命题,求实数的取值范围.