已知x,yR+,且x+4y=1,则xy的最大值为 .
(本小题满分13分)双曲线的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.
(本小题满分14分)如图,设是圆上的动点,点D是在轴上的投影,M为D上一点,且(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。
已知命题p:函数在区间(0,+∞)上单调递增,命题q:函数f(x)=ax2-ax+1对于任意x∈R都有f(x)>0恒成立.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
(本小题满分12分)证明:ax2+bx+c=0有一根是1的充要条件是a+b+c=0.
(本小题满分12分)命题"若a>0,则方程x2+x-a=0有实数根"写出逆命题、否命题、逆否命题并判断真假.