已知命题p:函数在区间(0,+∞)上单调递增,命题q:函数f(x)=ax2-ax+1对于任意x∈R都有f(x)>0恒成立.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
设 C 1 , C 2 ..., C n ,...是坐标平面上的一列圆,它们的圆心都在 x 轴的正半轴上,且都与直线 y = 3 3 x 相切,对每一个正整数 n ,圆 C n 都与圆 C n + 1 相互外切,以 r n 表示 C n 的半径,已知 r n 为递增数列.
(Ⅰ)证明: r n 为等比数列; (Ⅱ)设 r 1 =1,求数列 n r n 的前 n 项和.
设函数 f x = sin x - cos x + x + 1 , 0 < x < 2 π ,求函数 f x 的单调区间与极值。
如图,在多面体 A B C D E F 中,四边形 A B C D 是正方形, A B = 2 E F = 2 , E F ∥ A B , E F ⊥ F B , ∠ B F C = 90 ° , B F = F C , H 为 B C 的中点
(Ⅰ)求证: F H ∥ 平面 E D B ; (Ⅱ)求证: A C ⊥ 平面 E D B ; (Ⅲ)求四面体 B - D E F 的体积;
某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ)完成频率分布表; (Ⅱ)作出频率分布直方图; (Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
椭圆 E 经过点 A ( 2 , 3 ) ,对称轴为坐标轴,焦点 F 1 , F 2 在 x 轴上,离心率 e = 1 2 。 (Ⅰ)求椭圆 E 的方程; (Ⅱ)求 ∠ F 1 A F 2 的角平分线所在直线 l 的方程.