设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2.(1)求数列{}的通项公式;(2)设数列{}的前n项和为,求证:≤<.
设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程.
已知双曲线的右准线为,右焦点,离心率,求双曲线方程.
设点P(x,y)在椭圆上,求的最大、最小值.
已知数集具有性质;对任意的,与两数中至少有一个属于. (Ⅰ)分别判断数集与是否具有性质,并说明理由; (Ⅱ)证明:,且; (Ⅲ)证明:当时,成等比数列..
设无穷等差数列{an}的前n项和为Sn. (Ⅰ)若首项,公差,求满足的正整数k; (Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立