已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.(Ⅰ)求数列,的通项公式;(Ⅱ)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于该半圆所在的平面,且. (Ⅰ)求证:; (Ⅱ)设平面与半圆弧的另一个交点为. ①试证:; ②若,求三棱锥的体积.
如图,抛物线的顶点为坐标原点,焦点在轴上,准线与圆相切. (Ⅰ)求抛物线的方程; (Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。
某重点中学的高二英语老师Vivien,为调查学生的单词记忆时间开展问卷调查。发现在回收上来的1000份有效问卷中,有600名同学们背英语单词的时间安排在白天,另外400名学生晚上临睡前背。Vivien老师用分层抽样的方法抽取50名学生进行实验,实验方法是使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。 乙组同学识记停止8小时后的准确回忆(保持)情况如图。 (1)由分层抽样方法,抽取的50名学生乙组应有几名? (2)从乙组准确回忆音节数在[8,20)范围内的学生中随机选2人,求两人均准确回忆12个(含12个)以上的概率; (3)若从是否睡前记忆单词和单词小测能否优秀进行统计,运用22列联表进行独立性检验,经计算K2=4.069,参考下表你能得到什么统计学结论?
已知集合,B={x|| x-m|≥1};命题p:x∈A,命题q:x∈B ,并且命题p是命题q的充分条件,求实数m的取值范围.
由直线:上的点向圆C:引切线, 求切线段长的最小值。