(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)令,数列的前项和为,求证:.
已知直线经过直线的交点,且点到直线的距离为3,求直线的方程.
设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
设函数对于任意都有且时。(1)求; (2)证明:是奇函数; (3)试问在时是否有最大、最小值?如果有,请求出来,如果没有,说明理由.
已知函数是定义在上的奇函数,且,若,,则有.(1)判断的单调性,并加以证明;(2)解不等式;(3)若对所有,恒成立,求实数的取值范围.
二次函数满足且.(1)求的解析式;(2)在区间上,的图象恒在的图象上方,试确定实数m的范围.