(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)令,数列的前项和为,求证:.
已知函数(其中为常数).(Ⅰ)当时,求函数的单调区间;(Ⅱ) 当时,设函数的3个极值点为,且.证明:.
如图,直角坐标系中,一直角三角形,,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.⑴ 求双曲线的方程;⑵ 若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由
某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。(1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望;(2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。
如图,在四边形中,,,点为线段上的一点.现将沿线段翻折到(点与点重合),使得平面平面,连接,.(Ⅰ)证明:平面;(Ⅱ)若,且点为线段的中点,求二面角的大小.
已知数列{}的前项和为 (1)求证:数列是等比数列;(2)设数列{}的前项和为,求 。