已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称。
已知数列的前项和,数列满足 (1)求数列的通项公式;(2)求数列的前项和; (3)求证:不论取何正整数,不等式恒成立
在中,三个内角所对的边分别是 已知 (1)若,求外接圆的半径 (2)若边上的中线长为,求的面积。
数列中,,, (1)若为公差为11的等差数列,求; (2)若是以为首项、公比为的等比数列,求的值,并证明对任意总有:
已知数列{an}的各项均为正数,前n项的和Sn= ⑴ 求{an}的通项公式; ⑵ 设等比数列{bn}的首项为b,公比为2,前n项的和为Tn.若对任意n∈N*,Sn≤Tn 均成立,求实数b的取值范围.
已知等差数列满足, (I) 求数列的通项公式; (II) 求数列的前n项和.