已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.(1) 求f(x)的解析式;(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
已知函数f(x)= (1)求f(1)+f(2)+f(3)+f()+f()的值; (2)求f(x)的值域.
设集合A={x|x2-x+m=0},B={x|x2+px+q=0},且A∩B={1},A∪B=A. (1)求实数m的值; (2)求实数p,q的值.
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足:0<x1<x2<. (1)当x∈(0, x1)时,证明x<f(x)<x1; (2)设函数f(x)的图象关于直线x=x0对称,证明x0<.
已知:, (1)当时,恒有,求的取值范围; (2)当时,恰有成立,求的值. (3)当时,恒有,求的取值范围;
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=. (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.