已知四棱台上,下底面对应边分别是a,b,试求其中截面把此棱台侧面分成的两部分面积之比.
(文科)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为. (Ⅰ)求椭圆的方程和其“准圆”方程; (Ⅱ)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点. (ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明; (ⅱ)求证:线段的长为定值.
(理科)已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限. (Ⅰ)求证:以线段为直径的圆与轴相切; (Ⅱ)若,,,求的取值范围.
(文科)已知椭圆, (1)求椭圆的离心率. (2)设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.
(理科)在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为, 为椭圆的上顶点,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线:与椭圆交于,两点,直线:()与椭圆交于,两点,且,如图所示. (ⅰ)证明:; (ⅱ)求四边形的面积的最大值.
(文科)已知动直线与椭圆:交于两不同点,且的面积,其中为坐标原点. (Ⅰ)证明:和均为定值; (Ⅱ)设线段的中点为,求的最大值; (Ⅲ)椭圆上是否存在三点,使得?若存在,判断的形状;若不存在,请说明理由.