【改编】(本小题满分12分)已知函数(1)求函数最小正周期和单调递增区间;(2)设的内角A、B、C的对边分别为a、b、c,且,,判断△ABC的形状,并求三角形ABC的面积.先利用
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.
已知关于x的一元二次方程x2-2(a-2)x-b2+16=0.(1)若a,b是一枚骰子先后投掷两次所得到的点数,求方程有两个正实数根的概率;(2)若a∈[2,6],b∈[0,4],求一元二次方程没有实数根的概率.
某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该停车场临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲临时停车付费恰为6元的概率;(2)若每人停车的时间在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.(1)求连续取两次都是白球的概率;(2)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求连续取两次的分数之和为2的概率.
如图所示的茎叶图记录了甲组3名同学寒假假期中去图书馆A学习的次数和乙组4名同学寒假假期中去图书馆B学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x表示.(1)如果x=7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x=9,从学习次数大于8的学生中选2名同学,求选出的2名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.