某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核. (I)求从甲、乙两组各抽取的人数; (II)求从甲组抽取的工人中恰有1名女工人的概率; (III)记 ξ 表示抽取的3名工人中男工人数,求 ξ = C 6 1 C 4 1 C 10 2 = 8 15 的分布列及数学期望.
(本小题满分12分) 已知f(x)=(a∈R),不等式f(x)≤3的解集为{x|−2≤x≤1}. (Ⅰ)求a的值; (Ⅱ)若≤k恒成立,求k的取值范围.
(本小题满分12分) 某班50位学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]. (Ⅰ)求图中 x的值; (Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列和数学期望.
(本小题满分12分) 如图,直三棱柱ABC−A1B1C1中, AC= BC=AA1,D是棱AA1的中点,DC1⊥BD. (Ⅰ)证明:DC1⊥BC; (Ⅱ)求二面角A1−BD−C1的大小.
(本小题满分12分) 函数f(x)= sinωxcosωx+sin2ωx+,其图像相邻两条对称轴之间的距离为. (Ⅰ)求ω的值; (Ⅱ) 若A为△ABC的内角,且f=,求A的值.
为了了解某学校餐厅的饭菜质量问题,采用分层抽样的方法从高一、高二、高三三个年级中抽取6个班进行调查,已知高一、高二、高三年级分别有18、12、6个班. ①求从高一、高二、高三年级分别抽取的班级个数; ②若从抽取的6个班中随机抽取2个进行调查结果的对比,试列出所有可能的抽取结果,并且计算抽取的2个班中至少有1个来自高一年级的概率.