设函数 f ( x ) = a x 2 + b x + k ( k > 0 ) 在 x = 0 处取得极值,且曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线垂直于直线 x + 2 y + 1 = 0 . (1)求 a , b 的值;
(2)若函数 g ( x ) = e x f ( x ) ,讨论 g ( x ) 的单调性。
如图,四棱锥的底面是平行四边形,平面,是中点,是中点. (1)求证:面;(2)若面面,求证:.
已知函数,. (1)求函数的最小值和最小正周期; (2)设的内角、、的对边分别为,,,且,,若,求,的值.
在直角坐标中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为. (Ⅰ)写出的直角坐标方程;直线的直角坐标方程 (Ⅱ)为直线上一动点,当到圆心的距离最小时,求点的坐标.
设,其中,曲线在点处的切线与轴相交于点. (1)确定的值; (2)求函数的单调区间与极值.
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500 ml以上为常喝,体重超过50 kg为肥胖.
已知在这30人中随机抽取1人,抽到肥胖的学生的概率为. (1)请将上面的列联表补充完整. (2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. (3)现从常喝碳酸饮料且肥胖的学生(其中有2名女生)中,抽取2人参加电视节目,则正好抽到1男1女的概率是多少? 参考数据:
参考公式:K2=,其中n=a+b+c+d.