设函数 f ( x ) = a x 2 + b x + k ( k > 0 ) 在 x = 0 处取得极值,且曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线垂直于直线 x + 2 y + 1 = 0 . (1)求 a , b 的值;
(2)若函数 g ( x ) = e x f ( x ) ,讨论 g ( x ) 的单调性。
(本小题满分12分)如图,在四棱锥中,底面为平行四边形, 底面. (1)证明:;(2)若求二面角的余弦值。
(本小题满分12分)如图,在四棱锥中,底面为矩形,侧面底面,.(1)求证:面;(2)设为等边三角形,求直线与平面所成角的大小.
(本小题满分12分)如图(1),在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图(2)所示.(1)求证:平面;(2)求二面角的正切值.
(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(Ⅰ)求证:平面;(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由.
(本小题满分10分)已知线段两个端点,直线,且直线的倾斜角为。求的值。