【改编】如图,小明为测量树CD的高度,先测量了两棵树根部之间的距离BD=5m,已知树高AB=8m,站在点F处正好能望见CD的顶部,测得FB=8米,小明眼睛离地面的高度EF为1.6m,问树CD多高?
【问题】 如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF. 【思考】 将△ABE绕点A逆时针旋转90°至△ADE′的位置,易知点F、D、E′在一条直线上,由SAS可以证得△AE′F≌△AEF.由此得到:EF=E′F=DE′+DF=BE+DF. 【探究】 (1)如图②,在四边形ABCD中,点E、F分别在BC、CD上,AB=AD,∠B+∠D=180°,∠EAF=∠BAD,BE=1,EF=2.2,求DF的长. (2)将图②中的∠EAF绕点A旋转到如图③的位置,除去(1)中的条件BE=1,EF=2.2,其它条件不变时,探索线段EF、BE、DF之间的数量关系,并说明理由.
如图,直线y=x+6与x轴交于点B,与y 轴交于点A.以AB为边画正方形ABCD. (1)求△AOB的面积; (2)求点C的坐标; (3)已知点Q(-4,0),点P从点Q出发,以每秒2个单位的速度沿x轴的正方向运动,设运动时间为t秒,当t为何值时,△PBC是等腰三角形.
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图像如图所示,结合图像解答下列问题:(1)A、B两地相距 km;(2)求乙车与甲车相遇后,y乙与x之间的函数表达式;(3)甲、乙两辆汽车出发多长时间两车相距50km.
为了了解我校九年级中考体育测试项目男女长跑(男1000米,女800米)的冬训成绩,组织体育组的老师从九年级十四个班级中随机抽取了部分学生进行测试(满分为8分),并根据测试收集的数据绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题: (1)本次随机抽取的学生人数为 人; (2)将条形统计图补充完整,并求出扇形统计图中成绩为6分所对应的扇形的圆心角的度数; (3)若我校九年级共有800名学生,估计九年级学生长跑成绩不低于7分的人数.
如图,已知□ABCD的对角线AC、BD相交于点O,四边形OCED为菱形. (1)求证:□ABCD是矩形; (2)连接AE、BE,AE与BE相等吗?请说明理由.