(12分)某地电话拨号入网有两种收费方式,用户可以任选其一:方法一:计时制:0.05元/分;方法二:包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)设某用户某月上网的时间为小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
在平面直角坐标系xOy中,抛物线经过点A(0,-2),B(3,4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图像G(包含A,B两点).若直线CD与图像G有公共点,结合函数图像,求点D纵坐标t 的取值范围.
已知二次函数y= 2x2 -4x-6. (1)用配方法将y= 2x2 -4x-6化成y=a (x-h)2 +k的形式; (2)在所给的平面直角坐标系中,画出这个二次函数的图象; (3)当x取何值时,y随x的增大而减少? (4)当x取何值是,y<0?
如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点. (1)利用图中的条件,求反比例函数和一次函数的解析式. (2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
抛物线上部分点的横坐标x,纵坐标y的对应值如下表:
(1)根据上表填空: ①抛物线与x轴的交点坐标是和; ②抛物线经过点(-3, ); ③在对称轴右侧,y随x增大而; (2)试确定抛物线的解析式.
已知二次函数 (1)求证:无论m为任何实数,该二次函数的图像与x轴都有两个交点; (2)当该二次函数的图像经过点(3,6)时,求此二次函数的解析式.